Strain identifier

BacDive ID: 162473

Type strain: No

Species: Jejuia pallidilutea

Strain history: M. Hosokawa A1R.

NCBI tax ID(s): 504487 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.2:
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 7:
version 6:
version 9.3 (current version)

General

@ref: 67770

BacDive-ID: 162473

keywords: genome sequence, Bacteria, mesophilic, Gram-negative

description: Jejuia pallidilutea JCM 19302 is a mesophilic, Gram-negative bacterium of the family Flavobacteriaceae.

NCBI tax id

  • NCBI tax id: 504487
  • Matching level: species

strain history

  • @ref: 67770
  • history: M. Hosokawa A1R.

doi: 10.13145/bacdive162473.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/bacteroidota
  • domain: Bacteria
  • phylum: Bacteroidota
  • class: Flavobacteriia
  • order: Flavobacteriales
  • family: Flavobacteriaceae
  • genus: Jejuia
  • species: Jejuia pallidilutea
  • full scientific name: Jejuia pallidilutea Lee et al. 2009
  • synonyms

    • @ref: 20215
    • synonym: Hyunsoonleella pallidilutea

@ref: 67770

domain: Bacteria

phylum: Bacteroidetes

class: Flavobacteriia

order: Flavobacteriales

family: Flavobacteriaceae

genus: Jejuia

species: Jejuia pallidilutea

full scientific name: Jejuia pallidilutea Lee et al. 2009

type strain: no

Morphology

cell morphology

@refmotilityconfidencegram stain
125438no94
12543896.981negative
12543999.8negative

Culture and growth conditions

culture temp

  • @ref: 67770
  • growth: positive
  • type: growth
  • temperature: 30

Physiology and metabolism

oxygen tolerance

  • @ref: 125439
  • oxygen tolerance: obligate aerobe
  • confidence: 96.9

spore formation

@refspore formationconfidence
125438no92.482
125439no98.5

Sequence information

Genome sequences

@refdescriptionaccessionassembly leveldatabaseNCBI tax ID
66792Jejuia pallidilutea JCM 19302504487.4wgspatric504487
66792Jejuia pallidilutea JCM193022609460213draftimg504487
67770Jejuia pallidilutea JCM 19302GCA_000764795contigncbi504487

GC content

  • @ref: 67770
  • GC-content: 33.8
  • method: genome sequence analysis

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingno96.981no
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)no94.866no
125438spore-formingspore-formingAbility to form endo- or exosporesno92.482no
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)yes81.278no
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno95.934yes
125438motile2+flagellatedAbility to perform flagellated movementno94no
125439BacteriaNetspore_formationAbility to form endo- or exosporesno98.5
125439BacteriaNetmotilityAbility to perform movementno70.3
125439BacteriaNetgram_stainReaction to gram-stainingnegative99.8
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthobligate aerobe96.9

External links

@ref: 67770

culture collection no.: JCM 19302

Reference

@idauthorstitledoi/url
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
67770Curators of the JCMhttps://jcm.brc.riken.jp/en/
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG