Strain identifier

BacDive ID: 170184

Type strain: Yes

Species: Sinomicrobium kalidii

Strain Designation: HD2P242

NCBI tax ID(s): 2900738 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.2:
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 9.3 (current version)

General

@ref: 20215

BacDive-ID: 170184

keywords: genome sequence, 16S sequence, Bacteria

description: Sinomicrobium kalidii HD2P242 is a bacterium of the family Flavobacteriaceae.

NCBI tax id

  • NCBI tax id: 2900738
  • Matching level: species

doi: 10.13145/bacdive170184.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/bacteroidota
  • domain: Bacteria
  • phylum: Bacteroidota
  • class: Flavobacteriia
  • order: Flavobacteriales
  • family: Flavobacteriaceae
  • genus: Sinomicrobium
  • species: Sinomicrobium kalidii
  • full scientific name: Sinomicrobium kalidii Li et al. 2022

@ref: 20215

domain: Bacteria

phylum: Bacteroidota

class: Flavobacteriia

order: Flavobacteriales

family: Flavobacteriaceae

genus: Sinomicrobium

species: Sinomicrobium kalidii

full scientific name: Sinomicrobium kalidii Li et al. 2022

strain designation: HD2P242

type strain: yes

Morphology

cell morphology

@refgram stainconfidencemotility
125439negative98.2
125438negative96.311
12543895.5no

Physiology and metabolism

oxygen tolerance

  • @ref: 125439
  • oxygen tolerance: obligate anaerobe
  • confidence: 93.6

spore formation

@refspore formationconfidence
125438no90
125439no92.7

Sequence information

16S sequences

  • @ref: 20215
  • description: Sinomicrobium kalidii 16S ribosomal RNA gene, partial sequence
  • accession: OL742713
  • length: 1498
  • database: nuccore
  • NCBI tax ID: 2900738

Genome sequences

  • @ref: 66792
  • description: Sinomicrobium kalidii HD2P242
  • accession: GCA_021183825
  • assembly level: complete
  • database: ncbi
  • NCBI tax ID: 2900738

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingno96.311no
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)no96.299no
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)yes82.357no
125438spore-formingspore-formingAbility to form endo- or exosporesno90no
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno98.434no
125438motile2+flagellatedAbility to perform flagellated movementno95.5no
125439BacteriaNetspore_formationAbility to form endo- or exosporesno92.7
125439BacteriaNetmotilityAbility to perform movementno60.9
125439BacteriaNetgram_stainReaction to gram-stainingnegative98.2
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthobligate anaerobe93.6

External links

@ref: 20215

culture collection no.: CGMCC 1.19025, KCTC 92136

literature

  • topic: Phylogeny
  • Pubmed-ID: 35819407
  • title: Sinomicrobium kalidii sp. nov., an indole-3-acetic acid-producing endophyte from a shoot of halophyte Kalidium cuspidatum.
  • authors: Li LF, Xu L, Li WH, Sun JQ
  • journal: Int J Syst Evol Microbiol
  • DOI: 10.1099/ijsem.0.005452
  • year: 2022
  • mesh: Bacterial Typing Techniques, Base Composition, *Chenopodiaceae, DNA, Bacterial/genetics, Endophytes/genetics, Fatty Acids/chemistry, Indoleacetic Acids, Phylogeny, RNA, Ribosomal, 16S/genetics, *Salt-Tolerant Plants, Sequence Analysis, DNA, Soil Microbiology
  • topic2: Transcriptome

Reference

@idauthorstitledoi/url
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG