Strain identifier
BacDive ID: 169621
Type strain: ![]()
Species: Parasutterella muris
Strain Designation: CLA-SR-150
NCBI tax ID(s): 487175 (species)
General
@ref: 68941
BacDive-ID: 169621
DSM-Number: 111000
keywords: genome sequence, Bacteria, mesophilic, Gram-negative
description: Parasutterella muris CLA-SR-150 is a mesophilic, Gram-negative bacterium that was isolated from caecal content; SPF mouse.
NCBI tax id
- NCBI tax id: 487175
- Matching level: species
doi: 10.13145/bacdive169621.20250331.9.3
Name and taxonomic classification
LPSN
- @ref: 20215
- description: domain/bacteria
- keyword: phylum/pseudomonadota
- domain: Bacteria
- phylum: Pseudomonadota
- class: Betaproteobacteria
- order: Burkholderiales
- family: Sutterellaceae
- genus: Parasutterella
- species: Parasutterella muris
- full scientific name: Parasutterella muris Afrizal et al. 2022
@ref: 68941
domain: Bacteria
phylum: Proteobacteria
class: Betaproteobacteria
order: Burkholderiales
family: Sutterellaceae
genus: Parasutterella
species: Parasutterella excrementihominis
full scientific name: Parasutterella excrementihominis Nagai et al. 2009
strain designation: CLA-SR-150
type strain: no
Morphology
cell morphology
- @ref: 125438
- gram stain: negative
- confidence: 95.329
Culture and growth conditions
culture medium
- @ref: 68941
- name: WILKINS-CHALGREN ANAEROBE BROTH (DSMZ Medium 339)
- growth: yes
- link: https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium339.pdf
culture temp
- @ref: 68941
- growth: positive
- type: growth
- temperature: 37
Physiology and metabolism
spore formation
- @ref: 125438
- spore formation: no
- confidence: 97.749
Isolation, sampling and environmental information
isolation
- @ref: 68941
- sample type: caecal content; SPF mouse
- geographic location: Aachen
- country: Germany
- origin.country: DEU
- continent: Europe
Safety information
risk assessment
- @ref: 68941
- biosafety level: 1
- biosafety level comment: Risk group (German classification)
Sequence information
Genome sequences
- @ref: 66792
- description: Parasutterella muris DSM 111000
- accession: GCA_943193095
- assembly level: contig
- database: ncbi
- NCBI tax ID: 2565572
Genome-based predictions
predictions
| @ref | model | trait | description | prediction | confidence | training_data |
|---|---|---|---|---|---|---|
| 125438 | aerobic | aerobic | Ability to grow under oxygenic conditions (including facultative aerobes) | no | 85.017 | no |
| 125438 | gram-positive | gram-positive | Positive reaction to Gram-staining | no | 95.329 | no |
| 125438 | anaerobic | anaerobic | Ability to grow under anoxygenic conditions (including facultative anaerobes) | yes | 62.809 | no |
| 125438 | spore-forming | spore-forming | Ability to form endo- or exospores | no | 97.749 | no |
| 125438 | thermophile | thermophilic | Ability to grow at temperatures above or equal to 45°C | no | 93.587 | yes |
| 125438 | motile2+ | flagellated | Ability to perform flagellated movement | no | 87.365 | no |
External links
@ref: 68941
culture collection no.: DSM 111000
straininfo link
- @ref: 115801
- straininfo: 398980
Reference
| @id | authors | title | doi/url | catalogue |
|---|---|---|---|---|
| 20215 | Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M. | List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ | 10.1099/ijsem.0.004332 | |
| 66792 | Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg Overmann | Automatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information) | https://diaspora-project.de/progress.html#genomes | |
| 68941 | Curators of the DSMZ | https://www.dsmz.de/collection/catalogue/details/culture/DSM-111000 | Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM 111000) | |
| 115801 | Reimer, L.C., Lissin, A.,Schober, I., Witte,J.F., Podstawka, A., Lüken, H., Bunk, B.,Overmann, J. | StrainInfo: A central database for resolving microbial strain identifiers | 10.60712/SI-ID398980.1 | |
| 125438 | Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg Overmann | Predicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets | 10.1101/2024.08.12.607695 |