Strain identifier

BacDive ID: 167685

Type strain: Yes

Species: Geomonas edaphica

Strain Designation: Red53

NCBI tax ID(s): 2570226 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.2:
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 7:
version 9.3 (current version)

General

@ref: 20215

BacDive-ID: 167685

keywords: genome sequence, 16S sequence, Bacteria, Gram-negative

description: Geomonas edaphica Red53 is a Gram-negative bacterium of the family Geobacteraceae.

NCBI tax id

  • NCBI tax id: 2570226
  • Matching level: species

doi: 10.13145/bacdive167685.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/pseudomonadota
  • domain: Bacteria
  • phylum: Pseudomonadota
  • class: Deltaproteobacteria
  • order: Desulfuromonadales
  • family: Geobacteraceae
  • genus: Geomonas
  • species: Geomonas edaphica
  • full scientific name: Geomonas edaphica Xu et al. 2020

@ref: 20215

domain: Bacteria

phylum: Pseudomonadota

class: Deltaproteobacteria

order: Desulfuromonadales

family: Geobacteraceae

genus: Geomonas

species: Geomonas edaphica

full scientific name: Geomonas edaphica Xu et al. 2020

strain designation: Red53

type strain: yes

Morphology

cell morphology

@refgram stainconfidence
125438negative96.394
125439negative92.6

Physiology and metabolism

oxygen tolerance

  • @ref: 125439
  • oxygen tolerance: anaerobe
  • confidence: 97.6

spore formation

  • @ref: 125439
  • spore formation: no
  • confidence: 98.3

Sequence information

16S sequences

  • @ref: 20215
  • description: Geomonas edaphica strain Red53 16S ribosomal RNA gene, partial sequence
  • accession: MH915554
  • length: 1424
  • database: nuccore
  • NCBI tax ID: 2570226

Genome sequences

  • @ref: 66792
  • description: Geomonas edaphica Red53
  • accession: GCA_004917075
  • assembly level: contig
  • database: ncbi
  • NCBI tax ID: 2570226

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingno96.394no
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)yes68.836no
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)no76.022no
125438spore-formingspore-formingAbility to form endo- or exosporesno79.663no
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno92.181no
125438motile2+flagellatedAbility to perform flagellated movementyes71.724no
125439BacteriaNetspore_formationAbility to form endo- or exosporesno98.3
125439BacteriaNetmotilityAbility to perform movementyes60.6
125439BacteriaNetgram_stainReaction to gram-stainingnegative92.6
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthanaerobe97.6

External links

@ref: 20215

culture collection no.: NBRC 114064, MCCC 1K04027

literature

  • topic: Phylogeny
  • Pubmed-ID: 31608033
  • title: Geomonas oryzae gen. nov., sp. nov., Geomonas edaphica sp. nov., Geomonas ferrireducens sp. nov., Geomonas terrae sp. nov., Four Ferric-Reducing Bacteria Isolated From Paddy Soil, and Reclassification of Three Species of the Genus Geobacter as Members of the Genus Geomonas gen. nov.
  • authors: Xu Z, Masuda Y, Itoh H, Ushijima N, Shiratori Y, Senoo K
  • journal: Front Microbiol
  • DOI: 10.3389/fmicb.2019.02201
  • year: 2019

Reference

@idauthorstitledoi/url
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG