Strain identifier

BacDive ID: 164289

Type strain: No

Species: Eubacterium sp.

Strain history: M. Kuroda; Natl. Inst. of Infect. Dis., Japan; Choco86.

NCBI tax ID(s): 142586 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.2:
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 7:
version 6:
version 9.3 (current version)

General

@ref: 67770

BacDive-ID: 164289

keywords: genome sequence, Bacteria, anaerobe, mesophilic

description: Eubacterium sp. JCM 32527 is an anaerobe, mesophilic bacterium that was isolated from Fecal sample of a healthy Japanese adult.

NCBI tax id

  • NCBI tax id: 142586
  • Matching level: species

strain history

  • @ref: 67770
  • history: M. Kuroda; Natl. Inst. of Infect. Dis., Japan; Choco86.

doi: 10.13145/bacdive164289.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/bacillota
  • domain: Bacteria
  • phylum: Bacillota
  • class: Clostridia
  • order: Eubacteriales
  • family: Eubacteriaceae
  • genus: Eubacterium
  • species: Eubacterium sp.
  • full scientific name: Eubacterium Prévot 1938 (Approved Lists 1980)

@ref: 67770

domain: Bacteria

phylum: Firmicutes

class: Clostridia

order: Eubacteriales

family: Eubacteriaceae

genus: Eubacterium

species: Eubacterium sp.

full scientific name: Eubacterium sp.

type strain: no

Culture and growth conditions

culture temp

  • @ref: 67770
  • growth: positive
  • type: growth
  • temperature: 37

Physiology and metabolism

oxygen tolerance

@refoxygen toleranceconfidence
125438anaerobe94.387
125439anaerobe99.6

Isolation, sampling and environmental information

isolation

  • @ref: 67770
  • sample type: Fecal sample of a healthy Japanese adult

Sequence information

Genome sequences

@refdescriptionaccessionassembly leveldatabaseNCBI tax ID
66792Lachnospiraceae bacterium Choco862109690.3completepatric2109690
67770Lachnospiraceae bacterium Choco86GCA_003584665completencbi2109690

GC content

  • @ref: 67770
  • GC-content: 44
  • method: genome sequence analysis

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingyes78.728no
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)yes94.387no
125438spore-formingspore-formingAbility to form endo- or exosporesno57.263no
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)no98.803no
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno94.218yes
125438motile2+flagellatedAbility to perform flagellated movementno81.925no
125439BacteriaNetspore_formationAbility to form endo- or exosporesyes72.8
125439BacteriaNetmotilityAbility to perform movementyes83.3
125439BacteriaNetgram_stainReaction to gram-stainingvariable64.4
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthanaerobe99.6

External links

@ref: 67770

culture collection no.: JCM 32527

Reference

@idauthorstitledoi/url
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
67770Curators of the JCMhttps://jcm.brc.riken.jp/en/
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG