Strain identifier
BacDive ID: 162299
Type strain:
Species: Achromobacter sp.
Strain history: N. Takizawa <-- H. Kiyohara AFK2.
NCBI tax ID(s): 1295134 (species)
version 9.3 (current version)
General
@ref: 67770
BacDive-ID: 162299
keywords: genome sequence, Bacteria, mesophilic, Gram-negative
description: Achromobacter sp. JCM 18799 is a mesophilic, Gram-negative bacterium that was isolated from Soil.
NCBI tax id
- NCBI tax id: 1295134
- Matching level: species
strain history
- @ref: 67770
- history: N. Takizawa <-- H. Kiyohara AFK2.
doi: 10.13145/bacdive162299.20250331.9.3
Name and taxonomic classification
LPSN
- @ref: 20215
- description: domain/bacteria
- keyword: phylum/pseudomonadota
- domain: Bacteria
- phylum: Pseudomonadota
- class: Betaproteobacteria
- order: Burkholderiales
- family: Alcaligenaceae
- genus: Achromobacter
- species: Achromobacter sp.
- full scientific name: Achromobacter Yabuuchi and Yano 1981
@ref: 67770
domain: Bacteria
phylum: Proteobacteria
class: Betaproteobacteria
order: Burkholderiales
family: Alcaligenaceae
genus: Achromobacter
species: Achromobacter sp.
full scientific name: Achromobacter sp.
type strain: no
Morphology
cell morphology
- @ref: 125438
- gram stain: negative
- confidence: 94.331
Culture and growth conditions
culture temp
- @ref: 67770
- growth: positive
- type: growth
- temperature: 30
Physiology and metabolism
oxygen tolerance
- @ref: 125439
- oxygen tolerance: aerobe
- confidence: 90.5
Isolation, sampling and environmental information
isolation
- @ref: 67770
- sample type: Soil
- geographic location: Okayama
- country: Japan
- origin.country: JPN
- continent: Asia
Sequence information
Genome sequences
@ref | description | accession | assembly level | database | NCBI tax ID |
---|---|---|---|---|---|
66792 | Achromobacter sp. JCM 18799 | GCA_001312205 | contig | ncbi | 1295134 |
66792 | Achromobacter sp. JCM 18799 | 1295134.5 | wgs | patric | 1295134 |
66792 | Achromobacter sp. JCM 18799 | 2728369714 | draft | img | 1295134 |
Genome-based predictions
predictions
@ref | model | trait | description | prediction | confidence | training_data |
---|---|---|---|---|---|---|
125438 | gram-positive | gram-positive | Positive reaction to Gram-staining | no | 94.331 | no |
125438 | anaerobic | anaerobic | Ability to grow under anoxygenic conditions (including facultative anaerobes) | no | 96.39 | no |
125438 | spore-forming | spore-forming | Ability to form endo- or exospores | no | 85.178 | no |
125438 | aerobic | aerobic | Ability to grow under oxygenic conditions (including facultative aerobes) | yes | 84.394 | no |
125438 | thermophile | thermophilic | Ability to grow at temperatures above or equal to 45°C | no | 97.929 | yes |
125438 | motile2+ | flagellated | Ability to perform flagellated movement | yes | 74.782 | no |
125439 | BacteriaNet | spore_formation | Ability to form endo- or exospores | no | 84.5 | |
125439 | BacteriaNet | motility | Ability to perform movement | yes | 51.1 | |
125439 | BacteriaNet | gram_stain | Reaction to gram-staining | negative | 75.6 | |
125439 | BacteriaNet | oxygen_tolerance | Oxygenic conditions needed for growth | aerobe | 90.5 |
External links
@ref: 67770
culture collection no.: JCM 18799
Reference
@id | authors | title | doi/url |
---|---|---|---|
20215 | Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M. | List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ | 10.1099/ijsem.0.004332 |
66792 | Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg Overmann | Automatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information) | https://diaspora-project.de/progress.html#genomes |
67770 | Curators of the JCM | https://jcm.brc.riken.jp/en/ | |
125438 | Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg Overmann | Predicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets | 10.1101/2024.08.12.607695 |
125439 | Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardy | deepG: Deep Learning for Genome Sequence Data. R package version 0.3.1 | https://github.com/GenomeNet/deepG |