Strain identifier

BacDive ID: 151465

Type strain: No

Species: Streptococcus agalactiae

NCBI tax ID(s): 1105264 (strain), 1311 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.2:
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 7:
version 6:
version 5:
version 4.1:
version 4:
version 9.3 (current version)

General

@ref: 56167

BacDive-ID: 151465

keywords: genome sequence, Bacteria, microaerophile, mesophilic

description: Streptococcus agalactiae CCUG 44110 is a microaerophile, mesophilic bacterium that was isolated from Human vagina,fornix,healthy subject.

NCBI tax id

NCBI tax idMatching level
1105264strain
1311species

doi: 10.13145/bacdive151465.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/bacillota
  • domain: Bacteria
  • phylum: Bacillota
  • class: Bacilli
  • order: Lactobacillales
  • family: Streptococcaceae
  • genus: Streptococcus
  • species: Streptococcus agalactiae
  • full scientific name: Streptococcus agalactiae Lehmann and Neumann 1896 (Approved Lists 1980)
  • synonyms

    @refsynonym
    20215Streptococcus difficile
    20215Streptococcus difficilis

@ref: 56167

domain: Bacteria

phylum: Firmicutes

class: Bacilli

order: Lactobacillales

family: Streptococcaceae

genus: Streptococcus

species: Streptococcus agalactiae

type strain: no

Culture and growth conditions

culture temp

  • @ref: 56167
  • growth: positive
  • type: growth
  • temperature: 37

Physiology and metabolism

oxygen tolerance

@refoxygen toleranceconfidence
56167microaerophile
125439microaerophile96.6

spore formation

  • @ref: 125439
  • spore formation: no
  • confidence: 94

metabolite utilization

@refChebi-IDmetaboliteutilization activitykind of utilization tested
6838129016arginine+hydrolysis
6838116988D-ribose+builds acid from
6838116899D-mannitol-builds acid from
6838130911sorbitol-builds acid from
6838117716lactose+builds acid from
6838127082trehalose+builds acid from
6838116634raffinose-builds acid from
6838117992sucrose+builds acid from
6838130849L-arabinose-builds acid from
6838118333D-arabitol-builds acid from
6838140585alpha-cyclodextrin-builds acid from
68381606565hippurate+hydrolysis
6838128087glycogen-builds acid from
6838127941pullulan+builds acid from
6838117306maltose+builds acid from
6838128053melibiose-builds acid from
683816731melezitose-builds acid from
68381320055methyl beta-D-glucopyranoside+builds acid from
6838116443D-tagatose-builds acid from
6838116199urea-hydrolysis

metabolite production

  • @ref: 68381
  • Chebi-ID: 15688
  • metabolite: acetoin
  • production: yes

metabolite tests

  • @ref: 68381
  • Chebi-ID: 15688
  • metabolite: acetoin
  • voges-proskauer-test: +

enzymes

@refvalueactivityec
68381urease-3.5.1.5
68381beta-mannosidase-3.2.1.25
68381glycyl tryptophan arylamidase-
68381pyrrolidonyl arylamidase-3.4.19.3
68381alkaline phosphatase+3.1.3.1
68381Alanyl-Phenylalanyl-Proline arylamidase+
68381beta-glucuronidase+3.2.1.31
68381arginine dihydrolase+3.5.3.6
68381beta-glucosidase-3.2.1.21
68381N-acetyl-beta-glucosaminidase-3.2.1.52
68381beta-galactosidase-3.2.1.23
68381alpha-galactosidase-3.2.1.22

API rID32STR

@refADH Argbeta GLUbeta GARbeta GURalpha GALPALRIBMANSORLACTRERAFSACLARADARLCDEXVPAPPAbeta GALPyrAbeta NAGGTAHIPGLYGPULMALMELMLZMbeta DGTAGbeta MANURE
56167+-++-++--++-+---++----+-++--+---

Isolation, sampling and environmental information

isolation

  • @ref: 56167
  • sample type: Human vagina,fornix,healthy subject
  • sampling date: 1999-06-17
  • geographic location: Göteborg
  • country: Sweden
  • origin.country: SWE
  • continent: Europe

isolation source categories

Cat1Cat2Cat3
#Host#Human
#Host Body-Site#Urogenital tract#Vagina
#Infection#Patient

Sequence information

Genome sequences

@refdescriptionaccessionassembly leveldatabaseNCBI tax ID
66792Streptococcus agalactiae CCUG 44110GCA_000310525contigncbi1105264
66792Streptococcus agalactiae CCUG 441101105264.3wgspatric1105264
66792Streptococcus agalactiae CCUG 441102698536619draftimg1105264

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingyes85.795no
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)no89.557yes
125438spore-formingspore-formingAbility to form endo- or exosporesno86.51no
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)no96.253yes
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno96.442yes
125438motile2+flagellatedAbility to perform flagellated movementno88.5no
125439BacteriaNetspore_formationAbility to form endo- or exosporesno94
125439BacteriaNetmotilityAbility to perform movementno77.6
125439BacteriaNetgram_stainReaction to gram-stainingpositive83.2
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthmicroaerophile96.6

External links

@ref: 56167

culture collection no.: CCUG 44110

straininfo link

  • @ref: 105585
  • straininfo: 109866

Reference

@idauthorstitledoi/urlcatalogue
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
56167Curators of the CCUGhttps://www.ccug.se/strain?id=44110Culture Collection University of Gothenburg (CCUG) (CCUG 44110)
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
68381Automatically annotated from API rID32STR
105585Reimer, L.C., Lissin, A.,Schober, I., Witte,J.F., Podstawka, A., Lüken, H., Bunk, B.,Overmann, J.StrainInfo: A central database for resolving microbial strain identifiers10.60712/SI-ID109866.1
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG