Strain identifier

BacDive ID: 151430

Type strain: No

Species: Streptococcus agalactiae

NCBI tax ID(s): 1105262 (strain), 1311 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.2:
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 7:
version 6:
version 5:
version 4.1:
version 4:
version 9.3 (current version)

General

@ref: 56132

BacDive-ID: 151430

keywords: genome sequence, Bacteria, anaerobe, mesophilic

description: Streptococcus agalactiae CCUG 44074 is an anaerobe, mesophilic bacterium that was isolated from Human vagina,fornix,healthy subject.

NCBI tax id

NCBI tax idMatching level
1105262strain
1311species

doi: 10.13145/bacdive151430.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/bacillota
  • domain: Bacteria
  • phylum: Bacillota
  • class: Bacilli
  • order: Lactobacillales
  • family: Streptococcaceae
  • genus: Streptococcus
  • species: Streptococcus agalactiae
  • full scientific name: Streptococcus agalactiae Lehmann and Neumann 1896 (Approved Lists 1980)
  • synonyms

    @refsynonym
    20215Streptococcus difficile
    20215Streptococcus difficilis

@ref: 56132

domain: Bacteria

phylum: Firmicutes

class: Bacilli

order: Lactobacillales

family: Streptococcaceae

genus: Streptococcus

species: Streptococcus agalactiae

type strain: no

Culture and growth conditions

culture temp

  • @ref: 56132
  • growth: positive
  • type: growth
  • temperature: 37

Physiology and metabolism

oxygen tolerance

@refoxygen toleranceconfidence
56132anaerobe
56132microaerophile
125439microaerophile97.2

spore formation

  • @ref: 125439
  • spore formation: no
  • confidence: 92.6

metabolite utilization

@refChebi-IDmetaboliteutilization activitykind of utilization tested
6838129016arginine+hydrolysis
6838116988D-ribose+builds acid from
6838116899D-mannitol-builds acid from
6838130911sorbitol-builds acid from
6838117716lactose-builds acid from
6838127082trehalose+builds acid from
6838116634raffinose-builds acid from
6838117992sucrose+builds acid from
6838130849L-arabinose-builds acid from
6838118333D-arabitol-builds acid from
6838140585alpha-cyclodextrin-builds acid from
68381606565hippurate+hydrolysis
6838128087glycogen-builds acid from
6838127941pullulan+builds acid from
6838117306maltose+builds acid from
6838128053melibiose-builds acid from
683816731melezitose-builds acid from
68381320055methyl beta-D-glucopyranoside+builds acid from
6838116443D-tagatose-builds acid from
6838116199urea-hydrolysis

metabolite production

  • @ref: 68381
  • Chebi-ID: 15688
  • metabolite: acetoin
  • production: yes

metabolite tests

  • @ref: 68381
  • Chebi-ID: 15688
  • metabolite: acetoin
  • voges-proskauer-test: +

enzymes

@refvalueactivityec
68381beta-mannosidase-3.2.1.25
68381glycyl tryptophan arylamidase-
68381pyrrolidonyl arylamidase-3.4.19.3
68381beta-galactosidase-3.2.1.23
68381Alanyl-Phenylalanyl-Proline arylamidase+
68381alkaline phosphatase+3.1.3.1
68381alpha-galactosidase-3.2.1.22
68381beta-glucosidase-3.2.1.21
68381beta-glucuronidase+3.2.1.31
68381urease-3.5.1.5
68381N-acetyl-beta-glucosaminidase-3.2.1.52
68381arginine dihydrolase+3.5.3.6

API rID32STR

@refADH Argbeta GLUbeta GARbeta GURalpha GALPALRIBMANSORLACTRERAFSACLARADARLCDEXVPAPPAbeta GALPyrAbeta NAGGTAHIPGLYGPULMALMELMLZMbeta DGTAGbeta MANURE
56132+--+-++---+-+---++----+-++--+---

Isolation, sampling and environmental information

isolation

  • @ref: 56132
  • sample type: Human vagina,fornix,healthy subject
  • sampling date: 1999-06-10
  • geographic location: Göteborg
  • country: Sweden
  • origin.country: SWE
  • continent: Europe

isolation source categories

Cat1Cat2Cat3
#Host#Human
#Host Body-Site#Urogenital tract#Vagina
#Infection#Patient

Sequence information

Genome sequences

@refdescriptionaccessionassembly leveldatabaseNCBI tax ID
66792Streptococcus agalactiae CCUG 44074GCA_000310505contigncbi1105262
66792Streptococcus agalactiae CCUG 440741105262.3wgspatric1105262
66792Streptococcus agalactiae CCUG 440742706794504draftimg1105262

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingyes85.954no
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)no89.439no
125438spore-formingspore-formingAbility to form endo- or exosporesno85.51no
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)no95.871yes
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno96.413yes
125438motile2+flagellatedAbility to perform flagellated movementno89no
125439BacteriaNetspore_formationAbility to form endo- or exosporesno92.6
125439BacteriaNetmotilityAbility to perform movementno81.7
125439BacteriaNetgram_stainReaction to gram-stainingpositive88.1
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthmicroaerophile97.2

External links

@ref: 56132

culture collection no.: CCUG 44074

straininfo link

  • @ref: 105557
  • straininfo: 109828

Reference

@idauthorstitledoi/urlcatalogue
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
56132Curators of the CCUGhttps://www.ccug.se/strain?id=44074Culture Collection University of Gothenburg (CCUG) (CCUG 44074)
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
68381Automatically annotated from API rID32STR
105557Reimer, L.C., Lissin, A.,Schober, I., Witte,J.F., Podstawka, A., Lüken, H., Bunk, B.,Overmann, J.StrainInfo: A central database for resolving microbial strain identifiers10.60712/SI-ID109828.1
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG