Strain identifier

BacDive ID: 133456

Type strain: Yes

Species: Roseomonas frigidaquae

Strain Designation: CW67T, CW67

Strain history: <- CN Seong, Sunchon Natl. Univ.

NCBI tax ID(s): 487318 (species)

For citation purpose refer to the digital object identifier (doi) of the current version.
Archive
version 9.3 (current version):
version 9.1:
version 9:
version 8.1:
version 8:
version 7.1:
version 7:
version 6:
version 5:
version 4.1:
version 4:
version 3:
version 2.1:
version 9.3 (current version)

General

@ref: 29046

BacDive-ID: 133456

keywords: genome sequence, 16S sequence, Bacteria, aerobe, spore-forming, Gram-negative, ovoid-shaped

description: Roseomonas frigidaquae CW67T is an aerobe, spore-forming, Gram-negative bacterium that was isolated from water cooling system.

NCBI tax id

  • NCBI tax id: 487318
  • Matching level: species

strain history

@refhistory
67770C. N. Seong CW67.
67771<- CN Seong, Sunchon Natl. Univ.

doi: 10.13145/bacdive133456.20250331.9.3

Name and taxonomic classification

LPSN

  • @ref: 20215
  • description: domain/bacteria
  • keyword: phylum/pseudomonadota
  • domain: Bacteria
  • phylum: Pseudomonadota
  • class: Alphaproteobacteria
  • order: Rhodospirillales
  • family: Acetobacteraceae
  • genus: Roseomonas
  • species: Roseomonas frigidaquae
  • full scientific name: Roseomonas frigidaquae Kim et al. 2009
  • synonyms

    • @ref: 20215
    • synonym: Falsiroseomonas frigidaquae

@ref: 29046

domain: Bacteria

phylum: Proteobacteria

class: Alphaproteobacteria

order: Rhodospirillales

family: Acetobacteraceae

genus: Roseomonas

species: Roseomonas frigidaquae

strain designation: CW67T, CW67

type strain: yes

Morphology

cell morphology

@refgram staincell lengthcell widthcell shapemotilityconfidence
29046negative0.9 µm0.7 µmovoid-shapedno
67771negative
125438negative98.796

pigmentation

  • @ref: 29046
  • production: yes

Culture and growth conditions

culture temp

@refgrowthtypetemperature
29046positivegrowth15-37
29046positiveoptimum30
67770positivegrowth30
67771positivegrowth30

culture pH

@refabilitytypepHPH range
29046positivegrowth06-10alkaliphile
29046positiveoptimum7

Physiology and metabolism

oxygen tolerance

@refoxygen toleranceconfidence
29046aerobe
67771aerobe
125439obligate aerobe99.4

spore formation

  • @ref: 29046
  • spore formation: yes

halophily

@refsaltgrowthtested relationconcentration
29046NaClpositivegrowth0-3 %
29046NaClpositiveoptimum0.5 %

observation

  • @ref: 67770
  • observation: quinones: Q-10

metabolite utilization

@refChebi-IDmetaboliteutilization activitykind of utilization tested
2904653424tween 20+carbon source
2904617632nitrate+reduction

enzymes

@refvalueactivityec
29046acid phosphatase+3.1.3.2
29046alkaline phosphatase+3.1.3.1
29046catalase+1.11.1.6
29046cytochrome oxidase+1.9.3.1

Isolation, sampling and environmental information

isolation

@refsample typecountryorigin.countrycontinentgeographic location
29046water cooling system
67770Water-cooling system at an oxygen-producing plant in GwangyangRepublic of KoreaKORAsia
67771From water coolingRepublic of KoreaKORAsiaGwangyang

isolation source categories

  • Cat1: #Environmental
  • Cat2: #Aquatic

taxonmaps

  • @ref: 69479
  • File name: preview.99_59531.png
  • url: https://microbeatlas.org/index.html?action=taxon&taxon_id=90_266;96_17919;97_22093;98_42323;99_59531&stattab=map
  • Last taxonomy: Roseomonas frigidaquae subclade
  • 16S sequence: EU290160
  • Sequence Identity:
  • Total samples: 316
  • soil counts: 130
  • aquatic counts: 129
  • animal counts: 48
  • plant counts: 9

Sequence information

16S sequences

  • @ref: 29046
  • description: Roseomonas frigidaquae strain CW67 16S ribosomal RNA gene, partial sequence
  • accession: EU290160
  • length: 1466
  • database: nuccore
  • NCBI tax ID: 487318

Genome sequences

@refdescriptionaccessionassembly leveldatabaseNCBI tax ID
66792Roseomonas frigidaquae strain JCM 15073487318.3wgspatric487318
67770Falsiroseomonas frigidaquae JCMGCA_013184735contigncbi487318
67770Falsiroseomonas frigidaquae JCM 15073GCA_012163145contigncbi487318

GC content

@refGC-contentmethod
2904669.5
6777069.5thermal denaturation, midpoint method (Tm)

Genome-based predictions

predictions

@refmodeltraitdescriptionpredictionconfidencetraining_data
125438gram-positivegram-positivePositive reaction to Gram-stainingno98.796yes
125438anaerobicanaerobicAbility to grow under anoxygenic conditions (including facultative anaerobes)no94.94yes
125438spore-formingspore-formingAbility to form endo- or exosporesno66.866yes
125438aerobicaerobicAbility to grow under oxygenic conditions (including facultative aerobes)yes83.143yes
125438thermophilethermophilicAbility to grow at temperatures above or equal to 45°Cno96.475yes
125438motile2+flagellatedAbility to perform flagellated movementyes71.133no
125439BacteriaNetspore_formationAbility to form endo- or exosporesno72.5
125439BacteriaNetmotilityAbility to perform movementno54
125439BacteriaNetgram_stainReaction to gram-stainingnegative72
125439BacteriaNetoxygen_toleranceOxygenic conditions needed for growthobligate aerobe99.4

External links

@ref: 29046

culture collection no.: KCTC 22211, JCM 15073

literature

topicPubmed-IDtitleauthorsjournalDOIyearmeshtopic2
Phylogeny19542147Roseomonas frigidaquae sp. nov., isolated from a water-cooling system.Kim MS, Baik KS, Park SC, Rhee MS, Oh HM, Seong CNInt J Syst Evol Microbiol10.1099/ijs.0.004812-02009Acetobacteraceae/*classification/genetics/isolation & purification/physiology, Bacterial Typing Techniques, Base Composition, DNA, Bacterial/analysis, Fatty Acids/analysis, Fresh Water/*microbiology, Genes, rRNA, Korea, Molecular Sequence Data, Phenotype, Phylogeny, RNA, Ribosomal, 16S/genetics, *Refrigeration, Sequence Analysis, DNA, Species SpecificityGenetics
Phylogeny24366626Roseomonas tokyonensis sp. nov. isolated from a biofilm sample obtained from a cooling tower in Tokyo, Japan.Furuhata K, Ishizaki N, Edagawa A, Fukuyama MBiocontrol Sci10.4265/bio.18.2052013Aerobiosis, Bacterial Typing Techniques, Biofilms/*growth & development, Cluster Analysis, DNA, Bacterial/chemistry/genetics, DNA, Ribosomal/chemistry/genetics, *Environmental Microbiology, Methylobacteriaceae/*classification/*isolation & purification/physiology, Microscopy, Electron, Scanning, Molecular Sequence Data, Nucleic Acid Hybridization, Phylogeny, RNA, Ribosomal, 16S/genetics, Sequence Analysis, DNA, TokyoGenetics
Phylogeny33034554Roseomonas selenitidurans sp. nov., isolated from urban soil, and emended description of Roseomonas frigidaquae.Hou X, Liu H, Wei S, Ding Z, Sang F, Zhao Y, Dong Y, Li H, Wang Q, Zhao J, Deng H, Zhang C, Kong L, Gao YInt J Syst Evol Microbiol10.1099/ijsem.0.0044962020Bacterial Typing Techniques, Base Composition, China, Cities, DNA, Bacterial/genetics, Fatty Acids/chemistry, Genome Size, Methylobacteriaceae/*classification/isolation & purification, Nucleic Acid Hybridization, Phospholipids/chemistry, *Phylogeny, Pigmentation, RNA, Ribosomal, 16S/genetics, Sequence Analysis, DNA, *Soil Microbiology, Ubiquinone/analogs & derivatives/chemistryTranscriptome

Reference

@idauthorstitledoi/urlID_cross_referencepubmed
20215Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ10.1099/ijsem.0.004332
29046Barberan A, Caceres Velazquez H, Jones S, Fierer N.Hiding in Plain Sight: Mining Bacterial Species Records for Phenotypic Trait Information10.1128/mSphere.00237-172547628776041
66792Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg OvermannAutomatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information)https://diaspora-project.de/progress.html#genomes
67770Curators of the JCMhttps://jcm.brc.riken.jp/en/
67771Curators of the KCTChttps://kctc.kribb.re.kr/En/Kctc
69479João F Matias Rodrigues, Janko Tackmann,Gregor Rot, Thomas SB Schmidt, Lukas Malfertheiner, Mihai Danaila,Marija Dmitrijeva, Daniela Gaio, Nicolas Näpflin and Christian von Mering. University of Zurich.MicrobeAtlas 1.0 betahttps://microbeatlas.org/
125438Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg OvermannPredicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets10.1101/2024.08.12.607695
125439Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardydeepG: Deep Learning for Genome Sequence Data. R package version 0.3.1https://github.com/GenomeNet/deepG